B-RAD ## HAND-HELD SPECTROMETER FOR GAMMA RADIATION Radio-isotope identification Double display Light and compact, ideal for radiation surveys Built-in signal processing electronics Equipped with a Hall probe Carrying cross-body pouch **B-RAD** is a hand-held radio-isotope identifier (RIID), capable of providing the photon spectra in presence of strong electromagnetic fields. It has been tested to work properly in magnetic fields up to 3 T. For comparison, conventional devices fail to operate at intensities as low as 0.1 T. Light and compact, **B-RAD** is ideal for radiation surveys and for local measurements of contamination or residual radioactivity in hot spots. It also includes a Hall probe connected to an indicator for a rough measurement of the magnetic field in which it is operating. **B-RAD** employs a high sensitivity $LaBr_3(Ce^{3+})$ crystal directly coupled to a Silicon photomultiplier (SiPM) matrix. The excellent scintillation properties and the high photon resolution of the detector (3.3% FWHM at 662 keV) make the device capable of operating over a wide energy range with a very fast response, i.e. reducing at minimum dead time-related issues. This technology has been originally developed at CERN (*) and has become the standard for radiation surveys in the Large Hadron Collider (LHC) experiments. It is commercialized under an official license granted by CERN, with the "CERN Technology" label. (*) Patent grant number: 9977134 (13 July 2017) "Portable Radiation Detection Device for Operation in Intense Magnetic Fields". magnetic fields at CERN #### **TECHNICAL SPECIFICATIONS** - Crystal: 0.6" × 0.6" LaBr₂ (Ce³⁺) - FHWM: 3.3% at 662 keV - Dose rate range: 100 nSv/h ÷ 10 mSv/h - Sensitivity: 90 cps/µSv/h - Energy range: 30 keV ÷ 2 MeV - Temperature range: 0 ÷ 40 °C - Battery life: up to 12 hours (in "power save mode") - Dimensions: - Main unit: 156 x 191 x 92 mm - Probe: 180 x 50 mm (diameter) - Weight: 2.3 kg ### **MAIN APPLICATIONS** - Radiation surveys at particle accelerators - Medical accelerators (electron linacs including Image Guided Radiation Therapy (IGRT) with MRI imaging, cyclotrons for radionuclide production and radiotherapy) - Radiation measurements at medical PET/MRI scanners - Radiation measurements in industrial applications, metal recycling and for fire brigade services - Current and future technologies involving the need of measuring radioactivity in the potential presence of perturbing magnetic fields - Geophysical applications (B-RAD NAT version) B-RAD main unit with double display ## **OPTIONS** Version for natural nuclides concentration measurement (B-RAD NAT) #### **ACCESSORIES AVAILABLE UPON REQUEST** - GPS module - Warranty extension from 12 months to 24 months