RADIONUCLIDE CALIBRATION STANDARDS 2017

Czech Metrology Institute Inspectorate for Ionizing Radiation

EUROSTANDARD CZ

Introduction - About CMI-IIR

Czech Metrology Institute (CMI) is the highest technical authority in the Czech Republic for the field of metrology in general, which puts it into the role of the National Metrology Institute (NMI). The Inspectorate for Ionizing Radiation (IIR) (established in 1992) is its branch aimed at metrology of all kinds of ionizing radiations. Besides the tasks connected to measuring, calibrating and certifying of all kinds of equipment and sources of radiation, it also produces its own range of radioactive standards for multiple purposes. The scale of products was designed specifically to suit the needs of subjects utilizing radioactivity for a wide variety of goals, e.g. laboratories for radioactivity measurement, laboratories of nuclear medicine, hygienic labs, legal metrology, etc.

CMI-IIR possesses the **national standard of unit of radioactivity – Becquerel (Bq)** and one of its primary tasks is to maintain the primary standard of radioactivity in compliance with the International System of Units (SI) and to provide services required by the Czech and international legislation in order to ensure accuracy and safety of equipment used in scientific and industrial radiometry. Performance of the laboratory of absolute measurements is verified by a **system of international comparisons**, which guarantees the highest level of quality control, (please see the section of Traceability below).

CMI-IIR is a holder of the following certifications:

Accredited testing laboratory No. 1341 Certificate No. 68/2011 (CIA) Determination of classification of sealed sources according to ČSN 40 4302 (ISO 2919)

License for handling ionizing radiation sources issued by SÚJB (State Office for Nuclear Safety)

Certified laboratory in accordance with ISO 9001:2008
Certificate No. 51254-2009-AQ-CZS-RvA (DNV – Det Norske Veritas)

Introduction – About EUROSTANDARD CZ

Private limited liability company EUROSTANDARD CZ was established in 1994 in order to provide CMI-IIZ with distribution and promotion services, so that it could focus strictly on research, development and production. EUROSTANDARD CZ also provides services in the area of consulting, transportation and distribution of radioactive material (RM) from a wide variety of international suppliers.

During the years, the cooperation of the two subjects grew stronger and now, EUROSTANDARD CZ not only distributes the standards of radioactivity from the CMI-IIR's production, but due to its knowledge of the market and know-how in the area of handling the RM is now also charged with obtaining RM from abroad, various tasks connected to logistics of the sources and appliances and disposal of depleted radioactive sources.

EUROSTANDARD CZ, spol. s r.o. is a holder of the **9001:2008 quality assurance certificate** No. 37810/A/0001/UK/En issued by the URS as well as, of course, all the necessary licenses and **authorizations of the State Office for Nuclear Safety (SONS) for handling ionizing radiation sources** and a license for transportation of dangerous goods including radioactive materials (**ADR + Class 7**).

CERTIFICATE NO. 37810

9001:2008 quality assurance certificate No. 37810/A/0001/UK/En (URS)

TRACEABILITY AND UNCERTAINTY

To maintain the worldwide coherence of measures, the CMI-IIR cooperates with other National Metrology Institutes on a regular basis. Probably the most important goal of such cooperation between NMIs is to maintain and possibly improve the level of their performance, reliability and accuracy of measurement. The key initiatives in this regard are the comparisons of performance of separate NMIs. These international comparisons are mainly organized by the International Bureau of Weights and Measures (Le Bureau international des poids et mesures - BIPM), for more information, please see http://www.bipm.org. Another organization helping the cooperation between NMI within the European region is European Association of National Metrology Institutes (EURAMET), who (beside other activities) also organizes comparative measurements.

CMI-IIR gives the highest importance to the quality of its products and **all the sources produced by CMI-IIR** are secondary standards (derived from the primary national standard) and are therefore considered to be of the highest level of quality (lowest uncertainty) available on the commercial market. **Key Comparisons** (please see the section dedicated to on-line resources) as well as additional comparisons are organized and supervised by the **Consultative Committee for Ionizing Radiation (CCIR/CCRI – in French).**

This puts CMI-IIR on the same hierarchy level as NIST (USA), NPL (UK), PTB (Germany) and other NMI. Calibration certificates issued by CMI-IIR (which accompany every source distributed) state and ensure that the source measured or equipment calibrated is traceable to the national standard which is therefore equivalent to other national standards of BIPM members.

Such comparisons are organized usually once a year. Every NMI receives identical source of ionizing radiation and performs appropriate measurement methods. The results are then submitted to BIPM and discussed thoroughly. The outcome of such comparisons is a table of equivalency showing the results and setting the equivalency between individual results.

The shorter the chain of traceability the lower is the uncertainty level, which is preferable to be the lowest possible. For some tasks such as calibrations and medical use, the lowest possible uncertainty level is essential for successful and reliable operations.

PRICING SYSTEM

Being a state institution doesn't mean that CMI-IIR is a non-profit organization but it is not strictly profit-oriented. Therefore it can offer very competitive prices on the global market. This is especially significant when it comes to individual wishes of our customers. Whether it is a custom-made mixture of nuclides or a special kind of measurement or determination, we are confident enough that it would be a hard task to find a cheaper supplier while maintaining precision, quality and low level of uncertainty.

We also provide the service of disposal of used and/or depleted sources from our production free of charge.

For information about specific prices, please do not hesitate to contact the Eurostandard CZ company, who will promptly give you a quotation including estimated price of distribution. Unless specified otherwise, prices are usually valid until the end of the current year. For a new year to come, prices are usually corrected by inflation, exchange rates and evaluation of the market of radionuclides, which influences the final price greatly.

F A Q – Frequently Asked Questions

Q: Are sources (standards) produced by CMI-IIR traceable to NIST (NPL, etc.)?

A: No, because CMI-IIR is at the same level of traceability hierarchy as NIST and is therefore equal to it in the matters of traceability. The connection to NIST is established however through a system of international comparative measurements organized by BIPM (please see the Traceability and uncertainty section, page 3)

Q: Do I need any special license to order your standards?

A: This depends on the specific source and mainly its (specific) activity. When it exceeds the level for "radioactive source" we are then legally obliged to require a permission for handling RM granted to you or your company by an appropriate state authority. Some limits of total activity are in the table at the back cover of this catalog.

Q: Can CMI-IIR provide me with custom made sources?

A: Yes, products in this catalog are the most commonly used standards and some of them are in stock, but it is quite often to produce standards according to client's specifications, whether it is an unusual mixture of nuclides, activities or geometry. Such sources are then marked with a suffix "X" (e.g. ER X)

Q: Can Eurostandard CZ provide me with products of other producers?

A: Yes, Eurostandard CZ can use its database of producers and suppliers to give you a quotation on most of possible demands from materials to special kinds of sources, e.g. Mossbauer sources, etc. Eurostandard CZ also provides services connected to importing, exporting, customs clearance and transportation of radioactive materials.

General Business Conditions

ORDERING

Please note that all the orders of CMI-IIR's production (this catalogue) should be placed through the EUROSTANDARD CZ company, all the orders and enquiries placed directly to the CMI-IIR will be forwarded to this distributor.

Enquiries or questions can be placed by mail, fax, e-mail, telephone or Skype. But please note that in case of orders, there has to be a written form (at least an e-mail message). All the orders discussed by phone or Skype will be then required to be summarized by the buyer and submitted in a written form, by e-mail preferably.

Please remember to provide us with enough information in your orders:

Product type (Optionally the catalogue reference code)

Geometry of the standard (Specifications of customer's own container/carrier - if applicable)

Nuclide and activity (or photon flux)

Other requirements or notes

Billing address (please include your VAT registration number)

Consignee address (if differs from the Billing address)

Preferred date of delivery (optional)

Contacts for ordering:

Address:

EUROSTANDARD CZ, spol. s r.o.

Radiová 1 Prague 10 100 00

Czech Republic

Email: info@eurostandard.cz

dutkova@eurostandard.cz (optional)
dutka@eurostandard.cz (optional)

Telephone: +420 266 020 499

Fax: +420 266 020 499

Skype: Eurostandard-cz

DELIVERY TIME AND DISTRIBUTION

The period between acceptance of the purchase order and delivery of the goods varies and depends on various aspects. The standard period (unless specified otherwise) is set to five to six weeks, but with the exception of time-demanding production procedures and high season, we usually deliver the purchased goods earlier.

If the product is not classified as dangerous goods, we can send it by a courier company directly to the customer's address. In case it is considered dangerous goods, the most common practice while sending the goods abroad is to use air freight with Incoterms CPT delivery condition to the nearest international airport. Especially with dangerous goods, this is usually the least expensive way of transportation. The client then arranges a transportation company with ADR (Class 7) license to deliver the goods to their address, or transports it by their own means. We can however arrange any kind of transportation preferred by the client. In such cases, we always try to find the most suitable solutions, then inform our client about the stipulated price of transportation and wait for their confirmation.

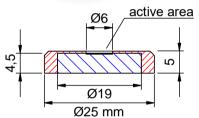
Every quoted price of distribution issued by EUROSTANDARD CZ always includes all the relevant fees. These are (in general): handling, packing and packaging, transportation to the airport (or forwarder), basic insurance and customs clearance charges (if applicable). In case of CPT condition, the distribution cost also includes the price of freight.

PAYMENT CONDITIONS

Standard period in which we kindly ask our foreign customers to execute payments is net 30 days after reception of the goods (and invoice). We believe that thirty days are enough for international settlements and it is a common practice globally. In case of delayed payments, we would send a reminder within few days after the due date. In case of no response or no progress in the settlement after three reminders, we would have to proceed to take legal actions.

EUROSTANDARD CZ accepts payments via bank transfer in CZK, EUR and USD, every invoice includes the particular bank details for the currency in question.

The radioactive substance in thin layer on the Pt foil is squeezed to the duraluminium casing with dimensions 25 x 5 mm (diameter x height). The casing has front window with diameter of 6 mm. The active area must be carefully protected against moisture, dust and abrasion.


APPLICATION

They are widely used as control sources in comparative measurements, for energy and efficiency calibration of alpha-spectrometers, determination of efficiency of window and windowless counters of α particles.

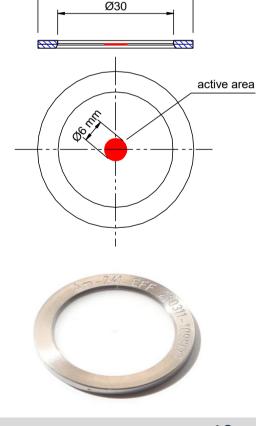
MEASUREMENT

Flux of α particles to spatial angle 2π sr is determined by 2π proportional counter. Activity is calculated from flux using correction on back scattering, spatial angle and self-absorption.

Nuclide	Half life (days)	Particle energy (keV)	Туре	Particle flux (2 p sr, s ⁻¹)	Uncertainty of flux (%)	Activity (kBq)	Code (for ordering)
239 D	²³⁹ Pu 8,811 x 10 ⁶	5 147 ·	EA 13	57	0,3	0,1	PUA 13
200 Pu		5 147	EA 14	570	0,3	1,0	PUA 14
			EA 13	57	0,3	0,1	AMA 13
²⁴¹ Am	1,578 x 10 ⁵	5 480	EA 14	570	0,3	1,0	AMA 14
			EA 15	5700	0,3	10	AMA 15
²⁴¹ Am + ²³⁹ Pu	-	-	EA 14	570	0,3	1,0	AMPU 14

Uncertainty is an abbreviation for combined standard uncertainty (P = 68,3 %).

Standards of X and g photon flux type EFF and EFX are the point sources with minimum self-absorption emitting homogeneously to angle near 4π sr. The activity is deposited between two welded polyethylene foils with square weight 3,6 \pm 0,3 mg.cm $^{-2}$. The foils are located in the metal ring with outer diameter 40 mm. The active material is located in the centre of the foil.


APPLICATION

Standards EFF and EFX are designed for energy and efficiency calibration of counters and spectrometers of X and γ photons. The activity of the standard gives the source strength approximately ~10 4 s $^{-1}$.

MEASUREMENT

The source strength of the EFX standard is determined by means of a suitable 4π counter. For the standards EFF (emitting photons γ) source emission is calculated from the activity and the known photon yields.

Nuclide	Half life (days)	Photon ene	rgy (keV)	Photon 4 π		Uncertainty (%)	Code	
		X - K	γ	keV				
⁵⁵ Fe	986	5,888		5,888	104	1,5	FMFX	
57 C a	⁵⁷ Co 271,26	6.4	122,06	122,06	10 4	1,5	CTFF	
31 C0		6,4	136,46	136,46	10 .		CIFF	
⁶⁵ Zn	243,9	8,03	1115,52	8,03	10 ⁴	1,7	ZNFX	
⁸⁵ Sr	64,78	13,4	514	13,4	104	2,2	SAFX	
¹⁰⁹ Cd	462,6	22	88,035	22	104	1,5	CDFX	
244.4	044.4	13,93	13,93	26,34				
²⁴¹ Am	157800	17,61 X _L	59,54	59,54	104	1,9	AMFF	

Ø40 mm

Uncertainty is an abbreviation for combined standard uncertainty (P = 68,3%).

Standards of γ photon flux EFS are the point sources with minimum self-absorption emitting homogeneously to angle near 4π sr. The activity is deposited between two welded polyethylene foils with thickness less than 0,2 mm. Foils are mounted in the metal ring with outer diameter 35 mm. The active material is located in the centre of the foil.

APPLICATION

The standards EFS are designed for energy and efficiency calibration of gamma spectrometers with Ge(Li) and HPGe detectors. Used radionuclides cover energy range 100 keV - 2 MeV.

MEASUREMENT

The activity of the standard is calculated from the mass and specific activity of the standard solution. The specific activity is determined by absolute measurement.

Ø24

 $Ø35 \pm 0.1 \text{ mm}$

			Photon –	Uncert	ainty of		
Nuclide	Half life (days)	Energy (keV)	yield (%)	activity (%)	photon flux, (%)	Activity (kBq)	Code
⁵⁷ Co	271,26	122,06	85,45	1.0	1,2	50	CTS 01
C0	27 1,20	136,46	10,77	1,2	2,2	50	CISUI
¹³⁹ Ce	137,50	165,853	80,1	1,2	1,3	80	CCS 01
²⁰³ Hg	46,72	279,19	81,49	1,3	1,4	150	HGS 01
⁸⁵ Sr	64,78	514,0	99,278	1,2	1,2	250	SAS 01
¹³⁷ Cs	11019	661,649	85,10	1,2	1,2	400	CSS 01
⁵⁴ Mn	312,22	834,83	99,978	1,0	1,0	450	MNS 01
⁶⁰ Co	100E 1	1173,21	99,865	0.0	0.0	700	COS 01
C0	1925,4	1332,47	99,981	- 0,8	8,0	700	CO3 01
88 Y	400.00	898,021	93,52	4.5	4.5	700	VWC 04
90 Y	106,60	1836,03	99,36	- 1,5	1,5	700	YWS 01
		53,170	2,2		-		
		79,612	3,18	-	4,3		
		80,989	34,2		5,3		
		160,613	0,62		5,2		
¹³³ Ba	3897	223,234	0,447	1,0	-	250	BAS 01
		276,402	7,17	•	2,0		
		302,795	18,46	-	1,8		
		355,95	62,22	-	1,4		
		383,78	8,93	-	1,8		
		121,782	28,40				
		244,700	7,54	-			
		344,281	26,52	-			
		411,11	2,246	-			
152 🕝	4050	444,0	2,78	4.0	4.0	000	EUC 04
192 EU	4858	778,91	12,94	1,0	1,2	600	EUS 01
		964,01	14,60	•			
		1086,50	10,09	•			
		1112,06	13,56	•			
		1408,04	20,80	•			
¹⁵² Eu	4858	276,402 302,795 355,95 383,78 121,782 244,700 344,281 411,11 444,0 778,91 964,01 1086,50 1112,06	7,17 18,46 62,22 8,93 28,40 7,54 26,52 2,246 2,78 12,94 14,60 10,09 13,56	- 1,0	1,8	600	EUS

Uncertainty is an abbreviation for combined standard uncertainty (P = 68,3 %).

A weighed amount of the standard solution is dropped on the disc of filter paper in the polymethylmetacrylate capsule. The capsule is sealed up, when dried. The capsule and the reflector layer of common NaI(Tl) scintillators provide a sufficient filtering of β radiation of relevant radionuclide. For 144 Ce this filtration is not sufficient and for the types EG 1 and EG 3 layer of minimum 3,2 mm Al between the standard and the detector is necessary.

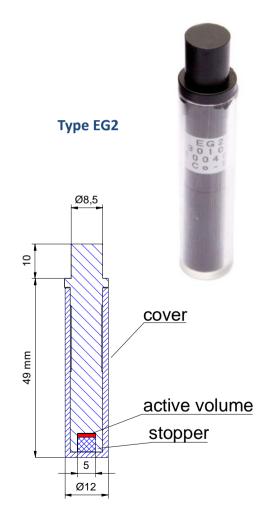
APPLICATION

Energy and efficiency calibration of scintillation spectrometers and counters of γ and X radiation. They can serve as reference sources for relative measurements. Their activity is chosen so that:

- standard EG 1 in closed geometry with the NaI(Tl) 38 x 25 mm
- standard EG 2 inserted to the well of NaI(TI) 45 x 50 mm
- **standard EG 3** located 10 cm from the forehead of NaI(TI) 38 x 25 mm gives approx. 1700 counts per second for energy higher than 30 keV.

MEASUREMENT

The activity of individual standards is calculated from the mass of the standard solution and is checked by relative measurements of γ photon flux. The specific activity is determined by absolute measurement using 4π β - γ , 4π α - γ or 4π X- γ coincidence method or 4π proportional counter.



Type EG1 & EG3

Ø25± 0,3

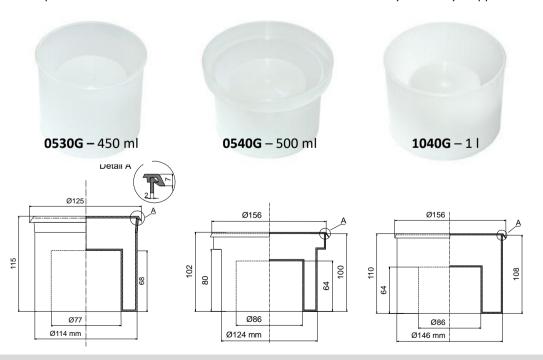
Ø3

Ø21 mm

Nuclide	Half life (days)	Туре	Activity (kBq)	Energy of photons γ (keV)	Yield of photons (%)	Uncertainty (%)	Code
		EG 1	5				NAG - 1
²² Na	950	EG 2	3	511,0 1275,55	18,66 99,94	1,0	NAG - 2
		EG 3	100	- ,			NAG - 3
		EG 1	13			0,7	MNG - 1
⁵⁴ Mn	312,22	EG 2	6	846,76	99,92		MNG - 2
		EG 3	300				MNG - 3
		EG 1	6				CTG - 1
⁵⁷ Co	271,26	EG 2	2	122,06 . 136,46	85,45 10,77	1,0	CTG - 2
		EG 3	150				CTG - 3
		EG 1	10				COG - 1
⁶⁰ Co	1925,4	EG 2	4	1173,21 1332,47	99,865 99,981	0,7	COG - 2
		EG 3	200	, , , ,			COG - 3
		EG 1	40			1,6	ZNG - 1
⁶⁵ Zn	243,9	EG 2	18	1115,52	50,75		ZNG - 2
		EG 3	800				ZNG - 3
		EG 1	8				YWG - 1
88 Y	106,6	EG 2	4	898,021 1836,030	93,52 99,36	1,2	YWG - 2
		EG 3	200	.000,000	33,53		YWG - 3
129	5,734.10 ⁹	EG 1	15	39,58	7,46	0.7	IZG - 1
.=- 1	5,734.10°	EG 2	5	29 - 33 X _K	> 70	0,7	IZG - 2
		EG 1	3	80,989	34,2		BAG - 1
¹³³ Ba	3897	EG 2	2	302,795	18,46	0,8	BAG - 2
		EG 3	80	355,95	62,22		BAG - 3

Nuclide	Half life (days)	Туре	Activity (kBq)	Energy of photons γ (keV)	Yield of photons (%)	Uncertainty (%)	Code
		EG 1	16				CSG - 1
¹³⁷ Cs	11019	EG 2	7	661,649	85,10	0,9	CSG - 2
		EG 3	300				CSG - 3
		EG 1	10				CKG - 1
¹⁴¹ Ce	32,50	EG 2	3	145,444	48,43	0,9	CKG - 2
		EG 3	250				CKG - 3
		EG 1	30			1,1	CEG - 1
¹⁴⁴ Ce	284,4	EG 2	8	133,531	11,09		CEG - 2
		EG 3	600				CEG - 3
		EG 1	30		depends		EUG - 1
¹⁵² Eu	4858	EG 2	15	from 121 to 1538 keV	on	0,8	EUG - 2
		EG 3	450	1000 1101	energy		EUG - 3
		EG 1	8				HGG - 1
²⁰³ Hg	46,72	EG 2	3	279,19	81,49	1,1	HGG - 2
		EG 3	200	•			HGG - 3
		EG 1	15				AMG - 1
²⁴¹ Am	157800	EG 2	5	59,5364	35,67	0,6	AMG - 2
		EG 3	450				AMG - 3

Uncertainty is an abbreviation for combined standard uncertainty (P = 68,3 %).


Marinelli beakers are filled with silicone rubber containing uniformly distributed radionuclide or mixture of radionuclides. Default density of the active volume is 0,98 g.cm⁻³ and mean atomic number approaches water. The standards are available in 3 types of polypropylene beakers with default volumes 450, 500 and 1000 ml. Other volumes, nuclides, activities or beakers are available on request. Custom geometry can be filled with no extra charge.

APPLICATION

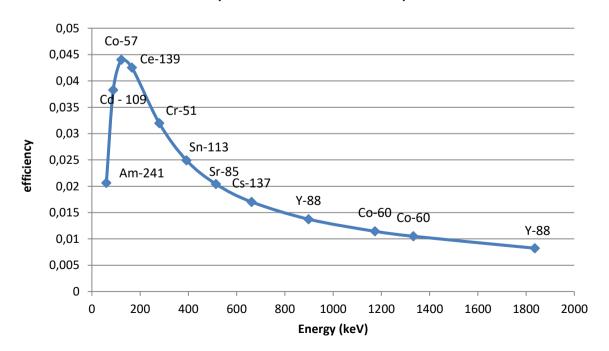
Energy and efficiency calibration of gamma spectrometers.

MEASUREMENTS

The standards are prepared from the standard solutions ER(EB) whose activity is determined by absolute method. The final sources are checked by measurement on gamma spectrometer with HPGe detector. Combined standard uncertainty of activity is approx. 2 %.

Туре	Nuclide	Half life (days)	Activity (kBq)
MBSS 1	¹⁵² Eu	4858	3
MBSS 2	Mixture: ²⁴¹ Am, ¹⁰⁹ Cd, ¹³⁹ Ce, ⁵⁷ Co, ⁶⁰ Co, ¹³⁷ Cs, ¹¹³ Sn, ⁸⁵ Sr, ⁸⁸ Y, ⁵¹ Cr	-	40
MBSS 3	¹³⁴ Cs	753	*
MBSS 4	¹³⁷ Cs	11019	3
MBSS 5	²²⁶ Ra	584300	3
MBSS 6	⁵⁷ Co	271,26	*
MBSS 7	⁶⁰ Co	1925,4	3
MBSS 8	²⁴¹ Am	157800	10
MBSS 9	²³² Th	5,15 . 10 ¹²	1,5
MBSS 10	¹⁵³ G d	241,6	*
MBSS 12	¹³³ Ba	3897	*
MBSS 13	¹⁰⁹ Cd	462,6	20
MBSS 14	²¹⁰ Pb	8108	*
MBSS 15	¹⁹² lr	74,12	*
MBSS 16	⁸⁵ Sr	64,78	*
MBSS 17	⁵⁴ Mn	312,22	*
MBSS 18	88 Y	106,60	*
MBSS 19	¹³⁹ Ce	137,50	*
MBSS 20	⁴⁰ K	4,602 . 10 ¹¹	1,5

Mixture of 10 isotopes (²⁴¹Am, ¹⁰⁹Cd, ¹³⁹Ce, ⁵⁷Co, ⁶⁰Co, ¹³⁷Cs, ¹¹³Sn, ⁸⁵Sr, ⁸⁸Y, ⁵¹Cr) developed especially for calibration of gamma measuring equipment. It covers the gamma energy range of **59,540–1836,03 keV with 12 energy peaks**. Combined standard uncertainty of activity is below approximately 3 %.


APPLICATION

Energy and efficiency calibration of gamma spectrometers

PRODUCT TYPES

Our multi-gamma mixture can be used in a wide range of forms including the most popular: liquid solutions (ER-mix), and a silicon resin (CBSS2). Without Hg-203, it can also be produced as a planar source (EM/EZ), filter, or a sample of contaminated steel (ES).

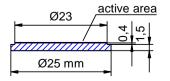
Efficiency calibration curve of a HPGe spectrometer

γ Energy (keV)
59,540
88,034
122,060
165,853
320
391,702
514,008
661,649
898,042
1173,238
1332,502
1836,030

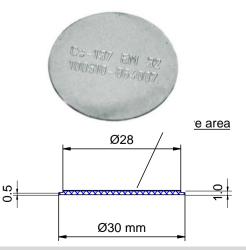
Standard radionuclide solution is deposited on a disc metal base in approx. 50 dots/cm². Evaporated solution is overlayed with thermally cured layer of protective laquer and aluminium layer with square weight approx. 20 μ g/cm² deposited in vacuum. Square weight of protective layer is less than 0,1 mg/cm². The active layer must be protected against dust, touch and corrosive atmosphere.

APPLICATION

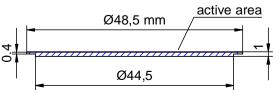
Efficiency calibration in measurements of various radionuclides in thin layer particularly for checking of relative measurements in surface, water, air and personnel contamination with α and β emitting radionuclides. Likewise for checking of stability of contamination monitors. For measurements of contamination can be used also standards EZ with larger active area.


MEASUREMENT

The activity is calculated from mass and specific activity of standard solution, traceable to primary activity standard. Surface emission is measured with windowless proportional counter with uncertainty < 1 %. Both values are specified in associated documentation.


DIMENSIONS: (Other dimensions on request)

Types EM 1, EM 2, EM 3, EM 4 diameter of the active area 23 mm overall diameter 25 mm thickness 1,5 mm


Types EM 12, EM 22, EM 32, EM 42 diameter of the active area 28 mm overall diameter 30 mm thickness 1 mm

EM 145 and EM 445

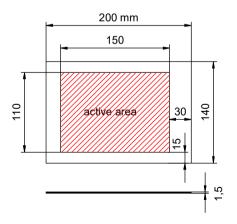
diameter of the active area 48,5 mm overall diameter 48,5 mm thickness 1 mm

Nuclide	Half life (days)	Partic α	le energy (β	keV) γ	Туре	Square activity (Bq.cm ⁻²)	Uncertainty of activity (%)	Code	
		u	Р	<u> </u>	EM 1		donvity (70)	CWM 1	
					EM 12	- 10	-	CWM 12	
¹⁴ C	2,089.10 ⁶		155		EM 3		< 1,1	CWM 3	
					EM 32	- 100	-	CWM 32	
					EM 1			COM 1	
				1173	EM 12	- 10	-	COM 12	
⁶⁰ Co	1925,4		310		EM 3		< 1,1	COM 3	
				1332	EM 32	- 100	-	COM 32	
					EM 1			STM 1	
			540		EM 12	_ 10	-	STM 12	
⁹⁰ Sr	10281		0.0		EM 145	_	< 1,1	STM 145	
O.	10201	2260		EM 3			STM 3		
					EM 32	- 100		STM 32	
					EM 1				CSM 1
			520		EM 12	10		CSM 12	
¹³⁷ Cs	11019			661	EM 3		< 1,1	CSM 3	
			1170	1170 —	EM 32	- 100	-	CSM 32	
				EM 1			PMM 1		
					EM 12	- 10	-	PMM 12	
¹⁴⁷ Pm	958	220 FM 3		< 1,1	PMM 3				
					EM 32	- 100	-	PMM 32	
					EM 1			TLM 1	
					EM 12	- 10	- 10	-	TLM 12
²⁰⁴ TI	1384		770		EM 3		< 1,2	TLM 3	
					EM 32	- 100	-	TLM 32	
U_nat	²³⁸ U - 1,647.10 ¹² ²³⁵ U - 2,593 . 10 ¹¹	4150	2310		EM 2	4	. 1 1	UWM 2	
U_nat	²³⁴ U - 9,02 . 10 ⁷	4750	190		EM 22	– 1	< 1,1 -	UWM 22	
					EM 2	4		PUM 2	
230 🗖	0.000.406	F4.47			EM 22	- 1	-4.4	PUM 22	
²³⁹ Pu	8,806.10 ⁶	514/	< 1,1	PUM 4					
					EM 42	- 10	-	PUM 42	
					EM 2	ı	_	AMM 2	
		5437			EM 22	- 1		AMM 22	
²⁴¹ Am	157800			60	EM 445		< 1,1	AMM 445	
		5480			EM 4		· -	AMM 4	
					EM 42		-	AMM 42	

Uncertainty is an abbreviation for combined standard uncertainty (P = 68,3 %).

Standard radionuclide solution is deposited on a metal base with standard dimensions 200 x 140 x 1,5 mm (or dimensions on request) in approx. 50 dots/cm². Evaporated solution is overlayed with thermally cured layer of protective laquer and aluminium layer with square weight approx. 20 μ g/cm² deposited in vacuum. Square weight of protective layer is less than 0,1 mg/cm². The active layer must be protected against dust, touch and corrosive atmosphere.

APPLICATION


Efficiency calibration of instruments for monitoring the surface and personal contamination by α and β emitting radionuclides. Likewise they can be used for checking of contamination monitor stability.

The activity is calculated from mass and specific activity of standard solution, traceable to primary activity standard. Surface emission is measured with windowless proportional counter with uncertainty < 1 %. Both values are specified in associated documentation.

	Half life	Partic	le energy	(keV)		Square activity	Uncertainty of	
Nuclide	(days)		β		Туре	(Bq.cm ⁻²)	activity (%)	Code
¹⁴ C	2,089. 10 ⁶		155		EZ 1	10	< 1,1	CWZ-1
⁶⁰ Co	1925,4		310	1173 1332	EZ 1	10	< 1,1	COZ-1
⁹⁰ Sr	10281		540 2260		EZ 1	10	< 1,1	STZ-1
¹³⁷ Cs	11019		520 1170	661	EZ 1	10	< 1,1	CSZ-1
¹⁴⁷ Pm	958		220		EZ 1	10	< 1,1	PMZ-1
²⁰⁴ TI	1384		770		EZ 1	10	< 1,2	TLZ-1
U _{nat}	²³⁸ U - 1,647.10 ¹² ²³⁵ U - 2,593. 10 ¹¹ ²³⁴ U - 9,02.10 ⁷	4150 4750	190 2310		EZ 2	1	< 1,1	UWZ-2
²³⁹ Pu	8,806 . 10 ⁶	5147			EZ 2	1	< 1,1	PUZ-2
²⁴¹ Am	157800	5437		60	EZ 2	1	< 1,1	AMZ-2

Uncertainty is an abbreviation for combined standard uncertainty (P = 68,3 %).

Aqueous solution of the appropriate quantity of 226 Ra. Chemical composition of the solution: 1 g BaCl $_2$ /l and 10g HCl/l. EB 00 is the aqueous solution of 1 g BaCl $_2$ /l and 10 g HCl/l with very low and determined mass fraction of 226 Ra.

APPLICATION

The standards are designed for efficiency calibration of activity (mass) determination of ²²⁶ Ra or ²²² Rn. Standard solutions are used either in the form of sealed ampoules for calibration or weighed part of the solution can be added to the analyzed sample as so called internal standard. After dilution by EB 00 solution is possible to prepare working standards with activities similar to measured samples. For emanometric determination of ²²⁶ Ra or ²²² Rn in water, air and so on it is possible to transfer them to a washing bottle from which radon is expelled by a stream of gas.

MEASUREMENT

Standard solutions are prepared by dissolving of 226 Ra content of standard ES activity of which was determined by comparison of gamma photon flux of the standard with the flux of IIR primary radium standards. Comparison is carried out by means of the 4π -y ionization chamber of IIR.

Nuclide	Half life (days)	Туре	Mass of the solution (g)	Concentration of ²²⁶ Ra (ng/g)	Mass of ²²⁶ Ra (ng)	Uncertainty (%)	Packing	Code
	_	EB 6	1	1000	1000	0,5		RAB 6
		EB 7	1	100	100	0,5	- 0	RAB 7
		EB 8	1	10	10	0,5	Glass - - ampoule 1 ml - -	RAB 8
		EB 9	1	1	1	0,6		RAB 9
²²⁶ Ra	584300 -	EB 10	1	0,1	0,1	0,7		RAB 10
Ka	364300	EB 65	5	1000	5000	0,5		RAB 65
		EB 75	5	100	500	0,5	0.	RAB 75
		EB 85	5	10	50	0,5	Glass = ampoule 5 ml =	RAB 85
		EB 95	5	1	5	0,6	ampoule 3 mi	RAB 95
		EB 105	5	0,1	0,5	0,7	_	RAB 105

²²⁶ Ra is in the radioactive equilibrium with its short life daughter products.

Activity of 1 g 226 Ra is 3,658.10 10 Bq

Uncertainty is an abbreviation for combined standard uncertainty (P = 68.3%).

A mixture of RaSO $_4$ and BaSO $_4$ is encapsulated in a cylindrical cell which is soldered, put in a tube or needle with length 13,5 - 25,5 mm and diameter 1,65 - 2,65 mm and soldered again. Both the cell and the outer capsule are made of alloy of 90 % Pt and 10 % Ir. The total wall thickness is 0.5 \pm 0.05 mm which is sufficient to absorb all alpha and beta radiation.

APPLICATION

The standards are designed for calibration of dosimetric instruments, efficiency calibration in activity measurements of 226 Ra and other radionuclides. The calibration of dosimetric instruments is based on the knowledge that 1 g of 226 Ra with a 0,5 mm Pt filter has an exposure rate of 59,12 x 10 $^{-9}$ A .kg $^{-1}$.

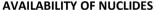
Mass of 226 Ra is determined by comparison with IIR primary radium standards by means of 4π - γ ionization chamber. Radiation of primary standards is filtered with 0,5 mm Pt.

Nuclide	Half life (days)	Type ¹⁾	Mass of ²²⁶ Ra ²⁾ (mg)	Uncertainty (%)	Code
		EP 10	20	0,5	RAP-22
		EP 9	10	0,5	RAP-12
		EP 8	5	0,5	RAP-53
²²⁶ Ra	584300	EP 1	1	0,5	RAP-13
		EP 14	0,1	0,5	RAP-14
		EP 15	0,01	0,6	RAP-15
		EP 16	0,001	0,7	RAP-16

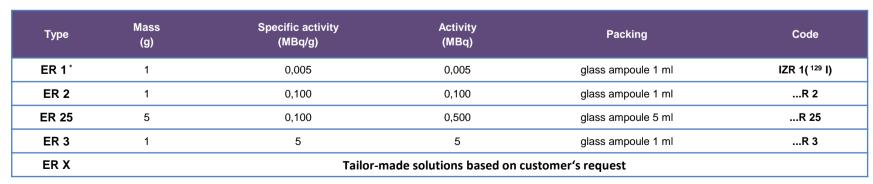
¹These standards are sealed sources and are tested for leakage

Uncertainty is an abbreviation for combined standard uncertainty (P = 68,3 %).

 $^{^2}$ Activity of 1 g 226 Ra is 3,658.10 10 Bq


Approximately 1 or 5 g of the radioactive solution is sealed in a glass ampoule. Review of types and their parameters is in the table 1.

APPLICATION


The standards are designed for efficiency calibration of all kinds of detectors, type ER 2 is especially suitable for the calibration of proportional, scintillation and GM counters, types ER 3 and ER X for ionization chambers. Standard solutions are used either directly or after dilution for preparation of working standards. Application for internal standards is also possible.

MEASUREMENT

The ER 2 and ER 25 standards are directly prepared from a standard solution, the specific activity of which was determined by absolute measurement using the 4π (α , β , X, e) - γ coincidence method or by a 4π proportional counter. The specific activity of the ER 3 and ER X standards is calculated from the dilution ratio and the specific activity of ER 2 standard solution.

Nuclides are divided into three categories. No Availability class means they are usually in stock. Class D represents nuclides available on request, the delivery time is usually 8+ weeks. Nuclides in class F will be ordered and produced twice a year, usually in April and October, so please make sure to plan their use ahead.

^{*} refers only to 129 I standards

Nuclide	Availability	Half life (days)	Chemical composition of aqueous solution	Uncertainty (%)	Code
³ H		4510	H ₂ O	1,7	HWR
⁷ Be	F	53,23	30 mg BeSO ₄ /l + 3 g HCl /l	1,0	BER
¹⁴ C		2,089 . 10 ⁶	5 g Na ₂ CO ₃ /l	1,5	CWR
²² Na		950	50 mg NaCl /l + 36 g HCl /l	0,8	NAR
²⁴ Na	F	0,62571	50 mg NaCl /l + 36 g HCl /l	0,6	NKR
³² P	F	14,30	50 mg $H_3 PO_4/I$	0,6	PWR
³⁵ S	D	87,46	50 mg Na ₂ SO ₄ /I	1,3	SWR
⁴⁵ Ca	D	162,8	20 mg CaCl $_2$ /I + 3 g HCI/I	1,2	CAR
⁵¹ Cr	D	27,701	30 mg CrCl ₃ /l + 3 g HCl /l	0,8	CRR
⁵⁴ Mn		312,22	50 mg MnCl $_2$ /l + 3 g HCl/l	0,6	MNR
⁵⁵ Fe		986	50 mg FeCl $_3$ /I + 3 g HCl/I	2,7	FMR
⁵⁶ Co	F	77,7	20 mg CoCl ₂ /l + 3 g HCl/l	1,9	CBR
⁵⁷ Co		271,26	20 mg CoCl ₂ /l + 3 g HCl/l	0,8	CTR
⁵⁸ Co	D	70,78	20 mg CoCl $_2$ /l + 3 g HCl/l	1,0	CYR
⁵⁹ Fe	F	44,54	50 mg FeCl $_3$ /I + 3 g HCl/I	0,8	FER
⁶⁰ Co		1925,4	20 mg CoCl $_2$ /I + 3 g HCI/I	0,4	COR
⁶³ Ni		36560	20 mg NiCl ₂ /I + 3 g HCl/I	1,5	NIR
⁶⁵ Zn		243,9	50 mg ZnCl $_2$ /I + 3 g HCl/I	1,5	ZNR
⁶⁷ Ga	D	3,261	12,6 mg GaCl $_3$ /l + 7 g HCl/l	1,2	GAR
⁷⁵ Se	D	119,6	20 mg Na $_2$ SeO $_3$ /I + 4 g NaOH/I	1,0	SER
⁸⁵ Sr		64,78	20 mg SrCl ₂ /l + 3 g HCl/l	0,8	SAR
⁸⁶ Rb	D	18,696	20 mg RbCl/l + 3 g HCl/l	0,8	RBR
⁸⁸ Y		106,60	20 mg YCl $_3$ /I + 3 g HCI/I	1,2	YWR
⁸⁹ Sr		50,6	20 mg SrCl ₂ /l + 3 g HCl/l	0,6	SRR
⁹⁰ Sr		10281	20 mg Sr(NO $_3$) $_2$ /l + 20 mg Y(NO $_3$) $_3$ /l + 3 g HNO $_3$ /l	0,6	STR
⁹⁰ Y	F	2,671	50 mg YCl $_3$ /I + 3 g HCI/I	0,6	YKR
⁹⁵ Zr	F	64	12 mg (NH $_4$) $_4$ Zr(C $_2$ O $_4$) $_4$ /I + 12 mg (NH $_4$) $_3$ NbO(C $_2$ O $_4$) $_3$ /I+ 0,5 g H $_2$ C $_2$ O $_4$ /I	1,0	ZRR
⁹⁵ Nb	F	35,04	12 mg (NH $_4$) $_3$ NbO(C $_2$ O $_4$) $_3$ /I + 0,5 g H $_2$ C $_2$ O $_4$ /I	0,6	NBR

Availability:

D – On request, longer delivery time

F – Planned orders of material twice a year (April and October)

Uncertainty is an abbreviation for combined standard uncertainty (P = 68,3 %).

Nuclide	Availability	Half life (days)	Chemical composition of aqueous solution	Uncertainty (%)	Code
⁹⁹ Mo	F	2,750	25 mg (NH $_4$) $_2$ MoO $_4$ /I + 0,3 g NH $_4$ OH/I	1,0	MOR
^{99m} Tc	F	0,25096	3 g NH ₄ OH/I	1,5	TCR
¹⁰⁶ Ru	F	368,3	50 mg RuCl $_3$ /l + 50 mg RhCl $_3$ /l + 30 g HCl/l	1,2	RUR
¹⁰⁹ Cd		462,6	50 mg CdCl ₂ /l + 3 g HCl/l	1,3	CDR
¹¹³ Sn		115,10	50 mg H ₂ SnCl ₆ /l + 216 g HCl/l	1,2	SNR
¹²⁴ Sb	D	60,20	50 mg SbCl ₃ /l + 70 g HCl/l	1,2	SBR
¹²⁵		59,89	50 mg Kl/l + 50 mg Na $_2$ S $_2$ O $_3$ /l	0,6	ITR
129		5,734 . 10 ⁹	4 g Kl/l + 10 g Na $_2$ S $_2$ O $_3$ /l	0,6	IZR
131		8,051	50 mg Kl/l + 50 mg Na $_2$ S $_2$ O $_3$ /l	0,6	IWR
¹³¹		8,051	2 μg l ₂ /ml CCl ₄	1,0	IER
¹³³ Ba		3897	30 mg BaCl ₂ /l + 3 g HCl/l	0,6	BAR
¹³⁴ Cs		753,0	20 mg CsCl/l + 3 g HCl/l	0,8	CGR
¹³⁷ Cs		11019	20 mg CsCl/l + 3 g HCl/l	0,8	CSR
¹³⁹ Ce		137,50	20 mg CeCl ₃ /l + 3 g HCl/l	0,8	CCR
¹⁴¹ Ce	D	32,50	30 mg CeCl $_3$ /l + 3 g HCl/l	0,8	CKR
¹⁴⁴ Ce	D	284,4	20 mg CeCl $_3$ /I + 20 mg PrCl $_3$ + 3 g HCl/I	1,0	CER
¹⁴⁷ Pm		958,0	20 mg PrCl $_3$ /I + 20 mg NdCl $_3$ + 3 g HCl/I	1,5	PMR
¹⁵² Eu		4858	30 mg EuCl $_3$ /l + 3 g HCl/l	0,6	EUR
¹⁹² lr	D	74,12	50 mg Na ₂ IrCl ₆ /I + 3 g HCl/I	0,8	IRR
²⁰³ Hg		46,72	50 mg Hg(NO $_3$) $_2$ /l + 4 g HNO $_3$ /l + 50 mg H $_2$ SO $_4$ /l	1,0	HGR
²⁰⁴ TI		1384	30 mg Tl $_2$ SO $_4$ /l + 3 g HNO $_3$ /l	1,3	TLR
²¹⁰ Po	F	138,4	25 mg TeO $_2$ /I + 63 g HNO $_3$ /I	1,3	POR
²¹⁰ Pb		8108	20 mg Pb(NO $_3$) $_2$ /l + 20 mg Bi(NO $_3$) $_3$ /l + 25 mg TeO $_2$ /l + 63 g HNO $_3$ /l	1,3	PBR
²³⁹ Pu		8,806 . 10 ⁶	63 g HNO ₃ /l	1,2	PUR
²⁴¹ Am		157800	20 mg Sm(NO $_3$) $_3$ /I + 6,3 g HNO $_3$ /I	0,4	AMR
²⁴³ Am	D	2,69 . 10 ⁶	20 mg Sm(NO $_3$) $_3$ /I + 6,3 g HNO $_3$ /I	0,4	AWR
Unat		1,63 . 10 ¹²	1,66 g UO ₂ (NO ₃) ₂ /l + 6,3 g HNO ₃ /l	1,0	UER

Availability:

D – On request, longer delivery time

F – Planned orders of material twice a year (April and October)

Uncertainty is an abbreviation for combined standard uncertainty (P = 68,3 %).

1 ml of polymerised mixture of epoxy resin containing 241 Am and 129 I in the plastic test tube with dimensions 12 x 73 mm (diameter x length). Activities of 241 Am and 129 I are in such a ratio that resulting spectrum γ on a well type NaI(TI) detector corresponds as much as possible with 125 I γ spectrum. Test tube is closed by plastic stopper.

APPLICATION

The standards are designed for the calibration and checking of RIA gamma counters, especially for the measuring of kits with 125 I.

MEASUREMENT

The effective activity is determined by the comparison measurement with 125 I working standards using the gamma spectrometer with a well type NaI(TI) detector 50 x 50. Nominal activity is 1500 Bg of 125 I.

Set of 10 pieces of 5 ml glass ampoules containing 30 kBq CH $_3$ ¹³¹ I each, absorbed in 0,1 g sorbent for gas chromatography. After opening ampoule, methyl iodide can be released by heating on 200 - 250 ° C in stream of carrier gas (air, Nitrogen). Content of CH $_3$ I in ampoule is 2 mg (nominal values).

APPLICATION

For checking of gas monitors in nuclear facilities, especially in nuclear power plants.

MEASUREMENTS

Activity is determined by gamma spectrometry with HPGe detector.

NOTE

Combined standard uncertainty is (P = 68,3 %) nominally 1,5 %.

Standards in 10 ml penicillin vials in form of polyacrylamide gel, active volume is 5 ml. In case of breaking the vial, polyacrylamide gel prevents larger contamination, which the radioactive solution would not.

APPLICATION

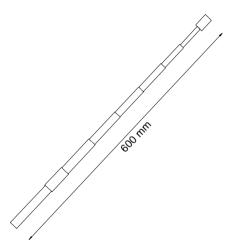
The standards are used for calibration and checking of measuring devices in nuclear medicine, e.g. activity calibrators.

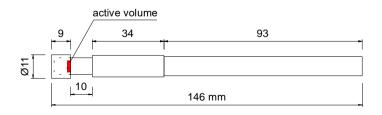
MEASUREMENT

The activity is determined by measurement in 4π ionization chamber, which is the part of national standard of activity.

Nuclide	Half life (days)	Photon energy (keV)	Yield of photons (%)	Activity (MBq)	Uncertainty (%)	Code
⁵⁷ Co	271,26 -	122,06	85,45	- 5	1,5	СТММ
o. C0	271,20	136,46	10,77			
⁶⁰ Co	1925,4 —	1173,21	99,87	- 5	0,8	CONM
		1332,47	99,98			CONM
		30,63	32,00		1,2	
	3897	30,97	61,51	5		
		35,00	17,00			
		35,80	3,70			
¹³³ Ba		80,989	34,2			BANM
		276,402	7,17			
		302,795	18,46			
		355,95	62,22			
		383,78	8,93			
¹³⁷ Cs	11019	661,649	85,10	5	1,2	CSNM
²⁴¹ Am	157800	59,54	35,67	5	2,3	AMNM

Uncertainty is an abbreviation for combined standard uncertainty (P = 68,3 %).


Dried weighed part of standard solution of 57 Co is closed in a cylindrical plastic capsule with dimensions 11×9 mm (diameter x length). The source is installed on the top of the telescopic holder. Nominal activity is 5 MBq.


APPLICATION

The source is used mainly as a marker in nuclear medicine.

MEASUREMENT

The activity is calculated from the mass of the standard solution.

Standards of radioactive rare gases ⁴¹ Ar, ⁸⁵ Kr, ¹³³ Xe are designed for calibration and checking of monitors of nuclear facilities outlets, especially those of nuclear power plants. Known activity of radioactive gas is closed in the steel pressure bottle in mixture with air under pressure up to 100 bar. Declared quantity is volume activity at normal conditions. Technology of production is described in documents 911-MP-C001-07, 911-MP-C002-07 and 911-MP-C003-07.

APPLICATION

Radioactive gas is blown off to the monitor systems of nuclear facilities.

MEASUREMENT

Activity of ⁴¹ Ar is determined by gamma spectrometry with HPGe detector, activities of ⁸⁵ Kr and ¹³³ Xe by measurement with calibrated ionization chamber.

NOTE:

Normal conditions are p = 101,3 kPa and t= 0 ° C

The Bottle Manequin Absorber Phantom (BOMAB) is the model of the human body 170 cm tall, separated into ten discrete parts, which can be independently filled. It is made from high density polyethylene, 4.8 - 5 mm thick, internal volume is approximately 55 dm 3 . It is supplied either empty or filled with non active silicone resin with specific density near 1 g.cm $^{-3}$ or filled with the same material containing activity, usually 152 Eu. The overall dimensions comply with requirements of Reference Man described in ICRP 23.

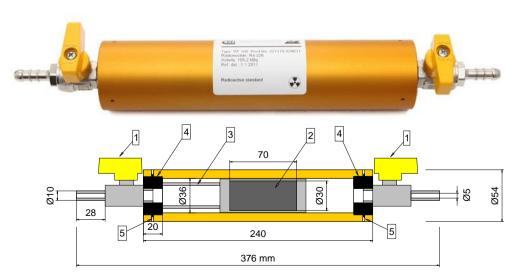
APPLICATION

BOMAB provides a functional simulation for the scattering of radiation in an adult human figure, to calibrate and check of whole body counters used for *in vivo* determination of deposited y emitting radionuclides.

MEASUREMENT

The activity is calculated from the specific activity and the mass of used standard solutions and from mass of filler.

Description	Pieces	Shape	Profile (cm)	Height (cm)	Volume (dm ³)
head	1	ellipse	19 x 14	20	3,50
neck	1	circle	13 diameter	10	1,00
thorax	1	ellipse	30 x 20	40	15,00
lumbar	1	ellipse	36 x 20	20	9,00
thigh	2	circle	15 diameter	40	5,90
leg	2	circle	12 diameter	40	3,60
arm	2	circle	10 diameter	60	3,60


Accurate and long term stable sources of defined activity of ²²² Rn in gas phase. Radon is released from thin layer of a plastic foil with emanation power approaching 1. The source is constructed as a stainless steel cylindrical case supplied on the ends with the two ball valves and the two aerosol filters connected on the output aperture of the valves. All parts are made from stainless steel or Teflon. The sources are produced in activity range 20, 100, 200, 500, 1000 a 2000 kBq of ²²⁶ Ra with commercial label RF 20, RF 100, RF 2000.

APPLICATION

The sources are designed for laboratory and field conditions. The main application is calibration of devices and detectors for activity measurements of ²²² Rn and ²²⁶ Ra in environmental research. The user can apply the source in batch or flow through mode.

MEASUREMENT

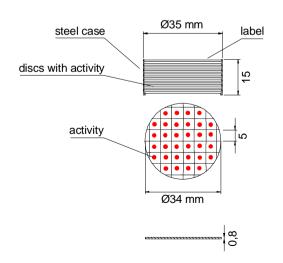
The activity of ²²⁶ Ra is determined by comparison with IIR standards, the emanation power by gamma spectrometry on a HPGe detector.

SPECIFICATION					
Combined standard uncertainty of ²²⁶ Ra activity	1,6 %				
Emanation power	near 1				
Internal volume	260 cm ³				
Maximum flow of carrier gas	10 l/min.				
Working temperature and relative moisture	0 - 40 ° C, 0 - 100 %				
Dimensions	566 x 72 mm				
Weight	3,2 kg				

- 1 ball valve
- 2 emanator
- 3 holder
- 4 flange
- 5 retaining screw

Material: Dural, brass, stainless steel, Teflon, epoxy resin

Cylinder shape standards type ESCO and ESCS consist of outer case with inserted discs with activity of 60 Co or 137 Cs. Activity is deposited in points in the net 5 x 5 mm. Discs putting together originate a cylinder with approximately homogeneously deposited activity. Disc and case are made from polished stainless steel. Standard dimension of cylinder is 35 x 15 mm, standard dimension of one disc is 34 x 0,8 mm (diameter x thickness). Other dimensions are made according to requirements of customer.


APPLICATION

Standards are designed for efficiency calibration of gamma spectrometers used for checking 137 Cs and 60 Co activity in steel. These radionuclides can occur in scrap iron as a result of liquidation of medical or industrial sources. According to customer requirements is possible to prepare standards with other radionuclides or with mixture of radionuclides.

MEASUREMENT

Activity of the standard is calculated from the mass and specific activity of the standard solution. The specific activity is determined by suitable absolute method. Produced sources are checked by comparison with IIR by standards gamma spectrometry with HPGe detector.

The table below shows some of the nuclides and their activity limits. Activity below this value (together with a specific activity limit) is a necessary condition for the source not to be classified as **a source of ionizing radiation** - according to the Czech legislation (307/2002 Col.) which is based on the Euratom agreement. Therefore our client is not obliged to present any form of license or authorisation, plus the transportation gets easier and cheaper.

Nuclide	Limit	Nuclide	Limit	Nuclide	Limit
H-3	1 GBq	Sr-89	1 MBq	Ce-141	10 MBq
Be-7	10 MBq	Sr-90	10 kBq	Ce-144	100 kBq
C-14	10 MBq	Y-90	100 kBq	Pm-147	10 MBq
Na-22	1 MBq	Mo-99	1 MBq	Eu-152	1 MBq
P-32	100 kBq	Ru-103	1 MBq	Ir-192	10 kBq
S-35	100 MBq	Ru-106	100 kBq	Ta-182	10 kBq
Cr-51	10 MBq	Cd-109	1 Mbq	Hg-203	100 kBq
Mn-54	1 MBq	Ag-110m	1 Mbq	TI-204	10 kBq
Fe-55	1 MBq	Sn-113	10 MBq	Bi-207	1 MBq
Co-56	100 kBq	Te-123m	10 MBq	Pb-210	10 kBq
Co-57	1 MBq	Sb-124	1 MBq	Rn-222	100 MBq
Co-58	1 MBq	Sb-125	1 MBq	Ra-226	10 kBq
Fe-59	1 MBq	I-125	1 MBq	Th-230	10 kBq
Co-60	100 kBq	I-131	1 MBq	Th-234	10 kBq
Zn-65	1 MBq	Ba-133	100 kBq	Am-241	10 kBq
Se-75	1 MBq	Xe-133	10 kBq		
Kr-85	10 kBq	Cs-134	10 kBq		
Sr-85	1 MBq	Cs-137	10 kBq		
Y-88	1 MBq	Ce-139	1 Mbq		

Producer:

CMI-IIZ

Czech Metrology Institute Inspectorate for Ionizing Radiation Radiová 1 Prague 10 102 00 Czech Republic

www.cmi.cz

Distributor:

EUROSTANDARD CZ

Radiová 1 Prague 10 102 00 Czech Republic

Tel/fax: +420 266 020 499 www.eurostandard.cz info@eurostandard.cz

